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The connected grain model of porous ceramics, developed earlier to explain porosity dependence 
of the elastic modulus, is extended to study thermal transport. The porosity and grain-size 
dependence of the thermal conductivity is calculated in terms of a power law. The exponent of the 
power law is dependent on the skewness of the grain-size distribution. The formalism is compared 
with the experimental results for isometric spherical-pore distribution in alumina, random-pore 
distribution in alumina, uranium dioxide and yttria-stabilized zirconia, sedimentary rocks and 
bricks. Good agreements are found between the experimental results and theoretical predictions 
based on the microstructure of the. materials and their porosity dependence of the elastic modulus. 

1. I n t r o d u c t i o n  and r e v i e w  o f  earl ier  
w o r k  

Thermal properties of porous ceramics are of con- 
siderable practical interest, due to their potential ap- 
plications in devices such as refractories [1], high- 
temperature gas filters [2], and heat exchangers [3]. 
In such devices, thermal conductivity plays a major 
role in heat transfer calculations. Similarly, thermal 
properties of rocks and concrete play an important 
role in several important geophysical applications, 
such as repositories of high-level radioactive waste 
[4]. 

Thermal conductivity of porous ceramics has been 
studied by a number of workers. The early work on 
modelling of heat flow through porous media was 
done by Eucken [5, 6], Russell [7], and Loeb [8]. 
They developed models for isometric pore shapes 
(spherical and cubical) and showed that the volume 
pore fraction increases the effective thermal conduct- 
ivity of porous ceramics. Riboud [9] used a law of 
mixtures for thermal conductivity of a porous solid by 
treating the solid and air channels separately. Austin 
[10] and Barrett [11] gave surveys which emphasized 
the effects of orientation of pores, while Aivazov and 
Domashnev [12] developed a parametric equation for 
thermal conductivity as a function of porosity. 

To verify some of these formalisms, Francl and 
Kingery [13] carried out experimental measurements 
on effects of isometric spherical and anisometric cylin- 
drical pore shapes in alumina, graphite and nickel. 
The choice of these materials was guided by the fact 
that nickel, alumina and graphite have low, medium 
and high emissivities and hence the effect of radiation 
on thermal conductivity in the three materials could 
be compared. They showed that the thermal conduct- 
ivity of such porous materials is directly proportional 
to the density of the material below ~ 500 ~ where 

emissivity is low. Beyond this temperature, however, 
radiation from the pore surfaces affects the net ther- 
mal conductivity. 

McClalland [14] measured the thermal conductiv- 
ity of alumina in the porosity range 0-0.5. Mirkovich 
[15], and Swain et al. [16] measured the thermal 
diffusivity of porous stabilized zirconia at 50 ~ and 
at elevated temperatures, respectively. Ross [17] 
measured the thermal conductivity of uranium diox- 
ide. The thermal conductivity measurements in sand 
stones and bricks were extensive. Sugiwara and 
Yoshizawa [18] studied the thermal conductivity of 
lwaki and Akabira sandstones from Japan, while 
Woodside and Messmer [19] measured the thermal 
conductivity of quartz-rich sand stones. The data on 
silica and diaspore bricks and on limestone were given 
by Austin [20]. 

A comparison of much of the data from the works 
given above with theoretical formulations of Russell 
[7], Loeb [8] and Austin [10], and modifications of 
their equations, was carried out by Rhee [21]. He 
concludes that, overall, the experimental data agree 
well only with the parametric equation of Aivazov and 
Domashnev [12]. 

The lack of agreement between experiments and 
theoretical predictions of the models presented in the 
overview given above, may be because of two reasons, 
i.e. the models are either empirical or they assume that 
ceramics have geometrically regular microstructure. 
In practice, however, ceramics consist of random 
microstructures. The pores and grains have random 
shapes and sizes ~ and random orientation. Thus, to 
incorporate this random nature of cerami c structures, 
there is a need for a model which describes the thermal 
conductivity of ceramics from first principles, in which 
randomness of the grain and pore sizes and their 
shapes forms the basis of derivation. A connected 
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grain model, which incorporates such random micro- 
structure has been developed by Wagh et al. [22] to 
relate porosity with elastic modulus of ceramics. This 
model is extended here to thermal transport in porous 
structures such as sintered ceramics, bricks and sedi- 
mentary rocks. Such a generalization of the model 
allows one to study the porosity dependence of ther- 
mal conductivity. In addition, it allows one to relate 
thermal transport to mechanical properties in poly- 
crystalline ceramics and rocks. 

The model is briefly described, and is applied to 
thermal conductivity; the explicit dependence of the 
thermal conductivity on porosity in random struc- 
tures is derived. The formulae derived are tested with 
experimental results on various ceramics, sedimentary 
rocks and bricks. Finally the implications of the model 
in practical circumstances are discussed. The details of 
the calculations of the contribution of radiation from 
the pore surfaces to the thermal conductivity are pro- 
vided in the Appendix. 

2. Connected grain model of cecamics 
The connected grain model [22], which is generalized 
here, assumes that grains in a polycrystalline ceramic 
are connected to each other at random to form 
a three-dimensional network of materials chains. The 
pore structure also forms a continuous network of 
channels between the chains. The materials chains, as 
well as the pore channels, have randomly varying 
cross-sections along their lengths. To simulate these 
cross-sections, we start with a chain of uniform cross- 
section, divide it into imaginary cylinders of length of 
a typical grain size and shrink the cross-section of 
a randomly chosen cylinder by a fraction, x, at a time. 
Repeatedly, when the cylinders are chosen randomly 
and shrunk, one obtains a chain of randomly varying 
cross-sections along its length. We assume that each 
cylinder consists of a lattice structure, i.e. contains 
elastic springs representing bonds between the lattice 
points. These springs are responsible for the elastic 
and thermal properties of the material. The details 
may be found in [22]. Here, we highlight the results 
relevant to the problem of thermal transport. 

The probability, q~(n), of any particular cylinder 
shrinking n times is given by 

~)(n) = [ M ! / ( M  - n ) ! n ! ] ( 1 / N ) n [ ( N  - 1)/N] M-" (1) 

where M is the total number of reductions performed 
among N number of cylinders involved. 

The average square radius (r 2) of the cylinders is 
given by the summation over n, i.e. 

(r 2) = ro 2 ~ xZ"~(n) (2) 
n=0 

where r o is the radius of an unshrunk cylinder. The 
summation of the right-hand side of Equation 2 and 
its comparison with a similar expression for the poros- 
ity, p, of the material leads to [22] 

(r  2) = r~(1 - p) (3) 

which implies that the average cross-section of a chain 
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is directly proportional to (1 - p ) ,  and hence to the 
bulk density of the material. 

The elastic modulus of the material resulting from 
the lattice structure of the cylinders was studied by 
Wagh et al. [22] and the following formula for poros- 
ity dependence of the elastic modulus was derived, 

E = Eo (1 - p) " (4) 

where Eo is the elastic modulus of a pore-free material 
and m = In x Z / ( x  2 - -  1) in thermodynamic limits. The 
value of x and hence that of m depends on the con- 
stituents of the material and the sintering process. 
A smaller value of x leads to a larger value of m and 
vice versa. For ceramics fabricated without any sinter- 
ing aid or processes which lead to accelerated grain 
growth such as hot pressing, etc., m is nearly equal to 
2. When rapid grain growth occurs during sintering, 
because of the use of sintering aids or due to pressure 
sintering, the grain-size distribution widens and the 
shrinking parameter, x, becomes small or m becomes 
large. These conclusions were drawn from the elastic- 
ity data on various ceramic materials [22]. We extend 
these concepts to thermal transport in the next sec- 
tion. 

3. Thermal conduct iv i ty  of consolidated 
porous structures 

In the model described in the last section, due to 
thermal excitations, the springs representing lattice 
vibrations produce phonons or quantized vibrations. 
The thermal transport is a collective effect of transport 
of these phonons through all the chains in the solid. 
For such a phonon gas, the thermal conductivity may 
be treated by the textbook formula [-23] 

k~ = (1/3) Cv.vl (5) 

where C, is the heat capacity of the solid at constant 
volume, v is the magnitude of the velocity of phonons 
which are responsible for the heat transport, and l is 
the effective mean free path, i.e. the average distance 
travelled by the phonons between subsequent col- 
lisions with scattering centres in the material. Cv in 
Equation 5 is directly measurable, v is difficult to 
measure in a porous material due to scattering of 
phonons at the pore walls. However, its magnitude 
may be obtained by direct measurement of the elastic 
modulus, E, by the formula 

E = /A2p (6) 

where p is the density of the material. Equation 5 may 
be used to obtain porosity dependence of thermal 
conductivity. Because the heat capacity is propor- 
tional to the density of the material, one may write 

Cv = Cvo(1 - p) (7) 

where Cvo is the heat capacity of a pore-free material. 
The porosity dependence of v can be obtained by 
using Equations 4 and 6. This leads to 

v = V o ( 1  - p ) ~ m - l l / 2  ( 8 )  

where Vo is the phonon velocity in a pore-free mater- 
ial. In Equation 5, I is a parameter characteristic of 



scattering mechanisms of phonons. Therefore it varies 
from material to material. In ceramics, if the 
wavelength of the lattice wave is small and compar- 
able to the grain size of the material, phonons will be 
scattered by grain boundaries and this scattering 
mechanism will be a dominant process over other 
possible scattering processes. In crystals, such as KC1, 
this size effect was observed for crystal sizes of a few 
millimetres at very low temperatures ( < 5 K) [23]. At 
such low temperatures, the phonon wavelength is 
comparable to the crystal size. In polycrystalline cer- 
amics, on the other hand, the average grain size itself is 
of the order of few micrometres and hence phonons 
will have comparable wavelength even at room tem- 
perature. In such cases, l will be of the order of the 
average grain size. Because the grain size and density 
of ceramics directly depend on sintering temperature 
and time, one may expect bigger grain sizes in ceram- 
ics, which are denser. This implies longer mean free 
paths in less-porous ceramics. 

This dependence of the grain size on the porosity of 
ceramics arises from two sources. The growth of a par- 
ticular grain during sintering is proportional to the 
surface area of contact between that grain and sur- 
rounding grains. A larger grain will have a larger area 
of contact with neighbouring grains. Because (1 - p) 
is directly proportional to the density, 9, from Equa- 
tion 5, the surface area is directly proportional to the 
density, p: In addition, the grain growth will also 
depend on the concentration of other grains, which 
are in contact with this surface area and hence will 
again depend also on the density of the matrix. Thus, 
when both of these factors are considered, grain 
growth during sintering will depend on p 2. 

The rate of increase of the average volume, VG, of 
a grain with respect to the density, 9, will be given by 
OVG/#9. Following the arguments given above, we can 
write 

(~VG 2 
c?p oc9 (9a) 

o r  

0v~ 
- k p  2 (9b) 

69 

where k is a constant. Integrating both sides of Equa- 
tion 9b, we obtain 

k 03 (10) v~= 5 

Because the average grain size Goc V~/3 , we have 

G= 6o ~ (11) 
Po 

where 9 o is the theoretical density of the material. The 
mean free path, l, is of the order of average grain size 
and hence from Equation 11, we have 

l =/o(1 - p) (12) 

Equations 7, 8 and 12 constitute basic relations, which 
govern the thermal conductivity in ceramics. The rel- 
evance of the individual equations in a particular 

application, however, will depend on the fabrication 
procedure in individual systems and the temperature 
at which the thermal conductivity is measured. In 
sintered ceramics, grain growth occurs and hence all 
three equations will influence the thermal conductivity 
at room temperature. At high temperature, however, 
the phonon mean free path, l, is affected by other 
scattering mechanisms. In particular, as the temper- 
ature increases, three phonon (Umklapp) processes 
[23] become dominant. These processes considerably 
limit the thermal conductivity and l is independent of 
the grain size and hence the porosity. 

Sedimentary rocks are formed by precipitation 
rather than extensive sintering, and hence the grain 
growth associated with sintering in ceramics will not 
occur in these rocks. Therefore, the mean free path will 
not depend on the porosity in rocks, but  the heat 
capacity and lattice velocity will still depend on the 
porosity. A similar case may arise in bricks, which are 
not sintered to temperatures high enough to allow 
grain growth. These different roles of the mean free 
path in different materials will be elaborated with 
specific examples in the next section. 

The discussion presented above ignores the effect of 
radiation of heat energy by pore surfaces. Francl and 
Kingery [13] showed that the radiation effects are 
negligible up to ~ 500 ~ in ceramics of low and mod- 
erate emissivity. Beyond that temperature, however, 
the radiation due to pore surfaces influences the effect- 
ive thermal conductivity of the material considerably. 
To include such a radiation term, we follow the treat- 
ment by Loeb [8], who considered the transport of 
energy through pore surfaces as equivalent to an addi- 
tional thermal conduction term. The details of the 
derivation are given in the Appendix, where it is 
shown that the additional thermal conductivity due to 
pores is given by 

kp = 88cyT3rop (13) 

where ~ is the emissivity of the pore surfaces and has 
a value anywhere between 0 and 1, cy is the Stefan- 
Boltzmann constant equal to 5.735 x 10 - 8 
J m - Z K - 4 s -  1, and T is the average temperature of 
the specimen. Because the heat transport in materials 
channels as well as in pore channels enhances the 
overall conductivity, one may write 

K = ks + kp = K0[(1 - p)0 + 5p] (14) 

where Ko is the thermal conductivity of the pore-free 
material. The exponent, q, depends on the contribu- 
tion of the porosity through Equations 9, 10 and 14; 
8 is given from Equations 13 arid 14 as 

= 8acyr3ro/Ko (15) 

Typical numerical estimation of 8 shows that it is 
a small quantity compared to q, and may be con- 
sidered as a correction term at temperatures up to 

1000 K and for pore sizes of even several hundred 
micrometres. Most of the experiments satisfy these 
conditions. This allows one to write Equation 14 ap- 
proximately as 

K = Ko(1 - p)q-8 (16) 
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Equation 16 gives the porosity dependence of the 
effective thermal conductivity of ceramics. 

4. Comparison with experimental results 
The model developed in the previous sections is ap- 
plied to different porous structures in this section. We 
consider data on ceramics with isometric pore distri- 
bution, ceramics which are well sintered and have 
random pore size and distribution, sedimentary rocks, 
and bricks fired below sintering temperatures. We 
compare these data with Equation 16. In each case, 
the porosity dependence of the heat capacity, the velo- 
city of lattice vibrations and the mean free path are 
examined and the porosity dependence of the thermal 
conductivity is derived. The exponents are calculated 
from the elasticity exponents from Wagh et a l .  [22]. 
These exponents are also obtained from the best fits 
with experimental data. Both sets of values of the 
exponents are compiled in Table I for the sake of 
ready comparison. 

Francl and Kingery [13] extensively studied 
alumina ceramics with isometric pore distribution. 
Pores of spherical shape and equal size were formed 
using pore formers during sintering in their samples. 
Thus, the pore- size distribution was uniform. Because 
of this, one expects the shrinkage parameter, x, to be 
equal to 1 in the connected grain model described in 
Section 2. Using the definition of m in Equation 6 it is 
simple to show that 

m = L i m x ~ l [ l n x Z / ( x  2 - 1)] = 1. (17) 

For this value of m, from Equation 8, one can show 
that the velocity, v, of the lattice wave does not depend 

on the porosity. Further, the variation in the porosity 
was attained by using varying pore former content in 
different samples, but by sintering them at the same 
temperature and for the same length of time. This 
should result in the same average grain size in all 
samples even though the porosity may be different. 
Because the mean free path is of the order of the grain 
size, this will result in the same mean free path in all 
the samples. Therefore, there should be no dependence 
of the mean free path on the porosity. This means, the 
only contribution to the porosity dependence of ther- 
mal conductivity given by Equation 5, arises from the 
dependence of the heat capacity on the porosity given 
by Equation 7. Therefore, Equation 16 may be cast in 
the following form 

K = Ko(1 - p)[1 - 6(T)] (18) 

If the temperature of the material is not very high 
(typically ~500~ from Equation 15, 6<<1 for ma- 
terials with moderate conductivity and pore size of 
r0 -~ 1 mm. In such cases, 8 may be ignored and 
Equation 18 may be written approximately in the 
form 

K = Ko(1 - p) (19) 

Equation 19 was empirically proposed and experi- 
mentally verified for alumina for temperatures 
< 500~ by Francl and Kingery [13]. At higher 

temperatures, however, radiation term affects the por- 
osity dependence and 8(T) cannot be ignored. There- 
fore, Equation 18, instead of Equation 19 had to be 
used at higher temperatures. 

Equation 18 was fitted with experimental data of 
Francl and Kingery [13] and the fittings are shown in 

T A B L E  I Exponents q obtained by fitting the equation K - Ko (1 - p)q with various experimental results by linear regression analysis 

Material q (exp.) q (theor) K o (Kcal h -  ~ Reference Comments 
oc-~  m- I )  

A1203, spherical 
isometric, pores 

Room temp., 1 1 [12] Independent of pore size 
400 ~ 1.04 1 [12] Independent of pore size 
800~ pore size 0.82 mm 0.92 0.9 - [12] Contribution of 

radiation term 
800~ pore size 1.46 mm 0.78 0.8 - [12] Contribution of 

radiation term 
AI/O3,  random pore distr. 2.58 2.57 [13, 20] q agrees with elasticity 

exponent 
UO2 1.48 1.63 2.99 [16, 20] Mean free path 

constant 
YzO3-stab. ZrO2 

25 ~ 3.1 3.4 [15] Ynria is sintering aid 
300 ~ 2.1' 2.4 [15] 
600~ 2.0 2.5 [15] 

Sedimentary rocks 
Akabira, Iwaki sandstones 1.4 1.5 1.38 [17, 20] No grain growth 
Limestone 1.6 1.5 1.02 E20] No grain growth 
Quartz-rich sandstone 3.0 1.1 [-18, 20] Quartz may widen grain- 

size distribution 

Bricks 
Fire brick 1.8 1.5 1.18 [19, 20] No grain growth 
Diaspore br ick  1.8 1.5 3.18 [19, 20] No grain growth 
Silica brick 1.4 1.5 1.58 [19, 20] No grain growth 
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Fig. 1. Using these fittings, the values of d were ob- 
tained for pore sizes 0.82 and 1.46 mm. At room 
temperature and 400~ the straight-line graphs of 
In (1 - p )  and In (K/Ko) almost coincide with each 
other giving a slope of ~ 1. This implies that Equation 
19 is valid and there is no measurable effect of radi- 
ation. At 800 ~ however, the slopes differ for the two 
pore sizes. Using these values of the slopes and Equa- 
tion 18, the values of 6(T) were determined. To com- 
pare them with the theoretical prediction, the values of 

were also calculated using Equation 15. The values 
of K o and ~ for alumina were assumed to be ~ 2.988 
J m -  1 K -  1 and -,~ 1, respectively. The theoretically 
determined values, as well as those obtained from the 
best fit in Fig. 1, are shown in Table II. The close 
agreement between these values confirms the applica- 
bility of the model to alumina with isometric pore 
distribution. 

When ceramics are sintered at different temper- 
atures and the porosity is reduced by grain growth, the 
contribution to the porosity dependence of the ther- 
mal conductivity arises from all three factors, i.e. heat 
capacity, lattice velocity and mean free path, as given 
by Equations 7, 8 and 12. Thus, the expression for the 
thermal conductivity, in the absence of a radiation 
term may be written from Equation 16 by 

K = Ko(1 -- p)q (20) 

where q = (m + 3)/2. 
The data by McClelland [141 for alumina is fitted 

with Equation 20 in Fig. 2 with q = 2.58 for the best 
fit. The value of m for alumina was shown earlier [22] 
to be equal to 2.14 from the elasticity measurements. 
For  this value of m, one expects q to be 2.57 from 

0.0 

-0 .2  

-0 .4  
G 

J 

-0 .6  

-0 .8  
-0 .8  

I I I z / 
Both sized pore% 400 ~  

800~ /- = 1.46 mm ,,4g',4 "~  

/ ~ temperatur% both sizes 
of pores 

I I I 
- 0 . 6  - 0 . 4  - 0 . 2  

Ln ( l - p )  

Figure 1 Porosity dependence of thermal conductivity of alumina 
at different temperatures with isometric spherical pore distribution 
fitted to the equation K = Ko(1 - p) 1 6 

T A B L E  II Theoretically and experimentally determined values of 
the radiation term (Equation 15) for isometric pore distribution at 
800 ~ in alumina 

Pore size (mm) 6 (theoretical) 6 (experimental) 

0.82 ~0.1 0.08 
1.46 ~ 0.2 0.22 

Equation 20 for alumina. This is very close to the 
value of 2.58 obtained f romthe  best fit, confirming the 
consistency of the connected grain model in applica- 
tions to mechanical as well as thermal properties. 

A similar comparison of Equation 20 with experi- 
mental results on UO2 by Ross [17] is shown in the 
same figure. The value of q obtained by the best fit is 
1.48. It has been shown in earlier work [22] that the 
value for m from the elasticity data is 2,27. A value 
very close to this is obtained by assuming that the 
mean free path is constant and independent of grain 
size. The mean free path may be constant because 
processes such as the Umklapp process limited the 
mean free path, or may be due to the fact that UO 2 
was not sintered enough to allow grain growth. In any 
case, when the mean free path does not depend on the 
porosity, Equation 16 reduces to 

K = Ko(1 - p)(m+l)/2 (22) 

From the elasticity data the calculated exponent was 
(m + 1)/2 = 1.63, which is close to that obtained 
from the best fit. 

The thermal conductivity results of yttria-stabilized 
zirconia are fitted with the theoretical prediction of 
the model in Fig. 3. The data agree quite well with 
Equation 20 at all three temperatures. At 25~ the 

2 ~ I i i i j I J I I J 

- 2  
-0 .8  , -0 .6  -0.:4 -0 .2  0.0 

Ln ( l - p )  

Figure 2 Variation of thermal conductivity with poros.ity of 
alumina and uranium dioxide. 
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~0 .8  
_5 
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0.2 
- 0 . 3  

_ I �9 [ ~ I i I S "  _ C oc_ 

\600~C - -  

I , i I i , 
-0.2 -0.1 0.0 -0.1 

Ln (l-p) 

Figure 3 Porosity dependence of thermal conductivity of yttria- 
stabilized ZrO 2 . 
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value of q was found to be 3.1. Using the relation 
between q and m given by Equation 20, we obtain 
m = 3.2, which is higher than the value obtained for 
alumina. Noting the fact that yttria, which is a glassy- 
phase material, is a sintering agent added for the 
purpose of stabilization, might have also helped in 
rapid densification in the material. A similar effect was 
reported [22] with the elasticity measurements of sili- 
con nitride sintered with yttria as a sintering agent and 
the present conclusion is consistent with it. At 300 and 
600 ~ the values ofq are 2.1 and 2.0. At these temper- 
atures, the phonon mean free path is limited by other 
scattering mechanisms, such as Umklapp process 
[23], and hence is independent of the grain size. Thus 
one expects that the porosity dependence of the ther- 
mal conductivity will arise from its dependence on the 
heat capacity and lattice velocity only. As a result, 
m may be evaluated by the expression q = (m + 1)/2. 
This yields a value of 3.2 for m at 300~ which is the 
same value at 25 ~ The slight decrease in the value of 
q at 600~ is likely to be due to the radiation by the 
pore surfaces. If this is true, ~ -- 0.1, which is of the 
same order of magnitude as that was found in alumina 
in the preceding discussion. 

Consolidated rocks are formed by precipitation, 
rather than sintering. Thus, grains do not grow during 
their formation. Therefore the relevant equation to be 
used is Equation 22. The agreement of this equation 
with the data is shown in Fig. 4, which shows the 
fitting of thermal conductivity data on different sedi- 
mentary rocks with Equation 22. In the case of 
Akabira, Iwaki sandstones and limestone, the value of 
(m + 1)/2 is nearly 1.5. Considering the fact that there 
is no contribution due to the mean free path in these 
materials, this value of q yields m = 2. This is quite 
consistent with earlier conclusions [22], that in the 
absence of any sintering aids, random porosity should 
result in a value of m of nearly 2. Wong et al. [24] 
observe a similar exponent for the porosity depend- 
ence of permeability of porous rocks. Considering the 
fact that the skewness of the materials as well as pore 
channels is the same for a given ceramic [22], this 
agreement of the exponents obtained in materials- 
related transport of thermal conductivity and pore- 

0 

_.5 

-1 

- 2  
-1 .0  

I I I I I I i I I I I I o l  ,Ye 

Quartz-rich sondstonef ~'~-'~~ 
- -  Akobira and lw(Iki ~ , , . . ~  ~ 

Limestone 

, , I , I I i q I , , I i 
- 0 .8  -0 .6  - 0 . 4  - 0 , 2  O.C 

Ln ( l - p )  

Figure 4 Dependence of the thermal conductivity on porosity of 
sedimentary rocks. 
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Figure 5 Porosi ty dependence of thermal conductivity of bricks. 

related transport of fluid permeability, is not surpris- 
ing. In the quartz-rich sandstones, however, the value 
of (rn + 1)/2 is 3. The presence of quartz is likely to 
widen the grain-size distribution and hence the skew- 
ness of the cross-section of the material chains. This 
should result in a smaller value of x and hence a larger 
value of m. This inference could not be verified because 
no data on microstructure were available on quartz- 
rich sandstone. 

Finally, we present the data on bricks in Fig. 5. 
Bricks are fired until the water of crystallization es- 
capes the material. Thus, they are not sintered to high 
temperatures to attain any grain growth, Thus, one 
would expect a value of m -- 2 a n d q  = (m + 1)/2 
= 1.5. The data on bricks confirm this. For  silica 

brick, we obtained a value of 1.5, and for diaspore and 
fire bricks, a value of 1.8. This means that in these 
materials the mean free path does not depend on the 
porosity and thermal conductivity is governed by the 
porosity dependence of the heat capacity and the 
lattice wave velocity. 

5. Implications of the connected grain 
model 

The connected grain model presented here relates the 
thermal conductivity to the microstructure, such as 
the average grain size and the grain-size distribution. 
It provides an explicit dependence of the thermal 
conductivity on the porosity in terms of a power law 
given by Equation 16. In the process, it provides some 
deeper insights into the required processes to fabricate 
ceramics of desired thermal conductivity. The expo- 
nent, which is a measure of the skewness of the pore- 
size distribution, governs the conductivity for a given 
porosity. Thus, the thermal conductivity may be ma- 
nipulated by controlling the average pore size and 
pore-size distribution. 

The connected grain model also makes a direct 
connection between the mechanical and fracture prop- 
erties of the material. Such a connection between the 
thermal conductivity and the modulus of elasticity is 
already exhibited in the last section. Similar relations 
between the fracture properties and the modulus of 
elasticity will be discussed in a future publication [25], 
by which, connections can be made between the ther- 
mal conductivity and the fracture behaviour of the 



materials. Such connections are very useful in the 
development of ceramic materials, where often com- 
promises are needed between the desired thermal 
properties and corresponding mechanical, as well as 
fracture properties of these materials. The connected 
grain model provides such a connection. 

Appendix.  Calculat ion of the radiation 
term in Equation 18 
Consider the transfer of heat across the facing walls of 
a pore channel of average diameter 2 ( r ) .  The walls 
will be at a temperature difference of 6T, due to the 
overall constant temperature gradient existing in the 
system and is given in this case by 8T/2{r). The heat 
transfer will take place due to radiation from the wall 
of higher temperature to the wall of lower temper- 
ature. The rate of heat transfer is given by 

6Q = ~cy(T 4 T~) = 4~cyT36T ( a l )  

where ~ and cy are the emissivity of the pore surface 
and the Stefan-Boltzmann constant, TI,  T2 and Tare  
the higher, lower and average temperatures, respec- 
tively. One can now approximately write from Equa- 
tion A1 

5Q = 4~cyT32~r)6T (A2) 

where dT/dx is the temperature gradient in the system. 
This leads to an equivalent thermal conductivity of the 
pore as 

kp = 8~cyT 3 {r)  (A3) 

It has been argued in Section 3 that the average grain 
size is proportional to (1 - p )  in a materials chain. 
With the same argument, one can also show that the 
average pore radius ( r )  will be directly proportional 
to p in a pore channel. Thus, one can write 

{r) = rop (A4) 

where r0 is the maximum pore size in the material. 
This leads to 

kp = 8~c~T3rop 

= ~Kop (A5) 

where 6 = 8ecyT3ro/Ko. 
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